70 research outputs found

    Considering the Case for Biodiversity Cycles: Reexamining the Evidence for Periodicity in the Fossil Record

    Get PDF
    Medvedev and Melott (2007) have suggested that periodicity in fossil biodiversity may be induced by cosmic rays which vary as the Solar System oscillates normal to the galactic disk. We re-examine the evidence for a 62 million year (Myr) periodicity in biodiversity throughout the Phanerozoic history of animal life reported by Rohde & Mueller (2005), as well as related questions of periodicity in origination and extinction. We find that the signal is robust against variations in methods of analysis, and is based on fluctuations in the Paleozoic and a substantial part of the Mesozoic. Examination of origination and extinction is somewhat ambiguous, with results depending upon procedure. Origination and extinction intensity as defined by RM may be affected by an artifact at 27 Myr in the duration of stratigraphic intervals. Nevertheless, when a procedure free of this artifact is implemented, the 27 Myr periodicity appears in origination, suggesting that the artifact may ultimately be based on a signal in the data. A 62 Myr feature appears in extinction, when this same procedure is used. We conclude that evidence for a periodicity at 62 Myr is robust, and evidence for periodicity at approximately 27 Myr is also present, albeit more ambiguous.Comment: Minor modifications to reflect final published versio

    SHIRAZ: an automated histology image annotation system for zebrafish phenomics

    Get PDF
    Histological characterization is used in clinical and research contexts as a highly sensitive method for detecting the morphological features of disease and abnormal gene function. Histology has recently been accepted as a phenotyping method for the forthcoming Zebrafish Phenome Project, a large-scale community effort to characterize the morphological, physiological, and behavioral phenotypes resulting from the mutations in all known genes in the zebrafish genome. In support of this project, we present a novel content-based image retrieval system for the automated annotation of images containing histological abnormalities in the developing eye of the larval zebrafish

    Multifractal Spatial Patterns and Diversity in an Ecological Succession

    Get PDF
    We analyzed the relationship between biodiversity and spatial biomass heterogeneity along an ecological succession developed in the laboratory. Periphyton (attached microalgae) biomass spatial patterns at several successional stages were obtained using digital image analysis and at the same time we estimated the species composition and abundance. We show that the spatial pattern was self-similar and as the community developed in an homogeneous environment the pattern is self-organized. To characterize it we estimated the multifractal spectrum of generalized dimensions Dq. Using Dq we analyze the existence of cycles of heterogeneity during succession and the use of the information dimension D1 as an index of successional stage. We did not find cycles but the values of D1 showed an increasing trend as the succession developed and the biomass was higher. D1 was also negatively correlated with Shannon's diversity. Several studies have found this relationship in different ecosystems but here we prove that the community self-organizes and generates its own spatial heterogeneity influencing diversity. If this is confirmed with more experimental and theoretical evidence D1 could be used as an index, easily calculated from remote sensing data, to detect high or low diversity areas

    Broad-Scale Patterns of Late Jurassic Dinosaur Paleoecology

    Get PDF
    There have been numerous studies on dinosaur biogeographic distribution patterns. However, these distribution data have not yet been applied to ecological questions. Ecological studies of dinosaurs have tended to focus on reconstructing individual taxa, usually through comparisons to modern analogs. Fewer studies have sought to determine if the ecological structure of fossil assemblages is preserved and, if so, how dinosaur communities varied. Climate is a major component driving differences between communities. If the ecological structure of a fossil locality is preserved, we expect that dinosaur assemblages from similar environments will share a similar ecological structure.This study applies Ecological Structure Analysis (ESA) to a dataset of 100+ dinosaur taxa arranged into twelve composite fossil assemblages from around the world. Each assemblage was assigned a climate zone (biome) based on its location. Dinosaur taxa were placed into ecomorphological categories. The proportion of each category creates an ecological profile for the assemblage, which were compared using cluster and principal components analyses. Assemblages grouped according to biome, with most coming from arid or semi-arid/seasonal climates. Differences between assemblages are tied to the proportion of large high-browsing vs. small ground-foraging herbivores, which separates arid from semi-arid and moister environments, respectively. However, the effects of historical, taphonomic, and other environmental factors are still evident.This study is the first to show that the general ecological structure of Late Jurassic dinosaur assemblages is preserved at large scales and can be assessed quantitatively. Despite a broad similarity of climatic conditions, a degree of ecological variation is observed between assemblages, from arid to moist. Taxonomic differences between Asia and the other regions demonstrate at least one case of ecosystem convergence. The proportion of different ecomorphs, which reflects the prevailing climatic and environmental conditions present during fossil deposition, may therefore be used to differentiate Late Jurassic dinosaur fossil assemblages. This method is broadly applicable to different taxa and times, allowing one to address questions of evolutionary, biogeographic, and climatic importance

    A new measure of longitudinal connectivity for stream networks

    Get PDF
    Habitat connectivity is a central factor in shaping aquatic biological communities, but few tools exist to describe and quantify this attribute at a network scale in riverine systems. Here, we develop a new index to quantify longitudinal connectivity of river networks based on the expected probability of an organism being able to move freely between two random points of the network. We apply this index to two fish life histories and evaluate the effects of the number, passability, and placement of barriers on river network connectivity through the use of simulated dendritic ecological networks. We then extend the index to a real world dendritic river system in Newfoundland, Canada. Our results indicate that connectivity in river systems, as represented by our index, is most impacted by the first few barriers added to the system. This is in contrast to terrestrial systems, which are more resilient to low levels of connectivity. The results show a curvilinear relationship between barrier passability and structural connectivity. This suggests that an incremental improvement in passability would result in a greater improvement to river network connectivity for more permeable barriers than for less permeable barriers. Our analysis of the index in simulated and real river networks also showed that barrier placement played an important role in connectivity. Not surprisingly, barriers located near the river mouth have the greatest impact on fish with diadromous life histories while those located near the center of the river network have the most impact on fish with potadromous life histories. The proposed index is conceptually simple and sufficiently flexible to deal with variations in river structure and biological communities. The index will enable researchers to account for connectivity in habitat studies and will also allow resource managers to characterize watersheds, assess cumulative impacts of multiple barriers and determine priorities for restoration
    corecore